Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • The US Department of Agriculture USDA and

    2018-10-30

    The US Department of Agriculture (USDA) and US Department of Health and Human Services recommend 2 cups (3–4 servings (U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2000)) of Avasimibe per day for active women. One cup of fruit (U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2005) (2 servings) consists of either 1 cup of raw or cooked fruit, 1 cup (8oz) of 100% fruit juice, or a small whole fruit. The results of our study support an increased consumption of fruit (6–7 servings; 3 cups) for pregnant women. However, further research is required to examine the potential impact of increased fruit consumption on the development of gestational diabetes and the impact of gestational fruit consumption on other health outcomes including birth weight and infant behavior. Increased gestational fruit consumption in healthy individuals is associated with improved cognitive development in children at 1year of age in our population-based cohort. Fruit nutrient components (lycopene, fructose) were both associated with neurodevelopment. Validation in Drosophila helps control for potential participant bias and unmeasured confounders. Results of this study strongly support the consumption of fruit as part of the prenatal diet in the general population of pregnant women.
    Author Contributions P.M. conceived the study, obtained funding for the study, wrote the first draft of the manuscript and drafted the final version of the manuscript. F.V.B. conceptualized, analyzed, prepared figures for the Drosophila experiments and co-wrote the manuscript. S.L. and C.R. performed the Drosophila memory experiments and prepared the figures. L.S. helped with manuscript development. A.L. performed statistical analysis, prepared figures and tables. J.P. and C.R. helped with designing and executing the CHILD neurodevelopmental testing. M.R.S., A.B.B., P.S. and, S.E.T. helped obtain funding, advised on the CHILD study design, and participated in data collection. L.L. N.W. C.D. and R.T.A. provided input into the Drosophila memory experiments. All authors provided critical comments on the manuscript content and approved the final version of the manuscript. This study was supported by CIHR, AllerGen Network of Centres of Excellence and the Women and Children\'s Health Research Institute (WCHRI).
    Competing Financial Interests
    Acknowledgements We are grateful to all the families who took part in this study, and the whole CHILD team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The Canadian Institutes of Health Research (CIHR) and the Allergy, Genes and Environment (AllerGen) Network of Centres of Excellence provided core support for CHILD. This research was specifically funded by CIHR (211722) and the Women and Children\'s Health Research Institute (WCHRI) at the University of Alberta. We would like to thank Mr. Jason Everitt for his help in developing Fig. 1 for this manuscript. We would like to thank the Bloomington Stock center for the rutabaga mutant stock.
    Introduction Live attenuated vaccines, such as Bacillus Calmette-Guérin (BCG), possess beneficial non-specific effects outside the scope of their target disease that have been associated with lower mortality rates (WHO, 2014a; Nankabirwa et al., 2015; Garly et al., 2003; Aaby et al., 2011). Vaccination with BCG increases immune responses and protects against unrelated pathogens (Kleinnijenhuis et al., 2012, 2014; Jensen et al., 2015; Clark et al., 1976), possibly through a combination of trained immunity, induced by epigenetic reprogramming of innate immune cells (Kleinnijenhuis et al., 2012), and heterologous T-helper (Th)1/Th17 immunity (Kleinnijenhuis et al., 2014). These general immune modulatory and antimicrobial effects of BCG may also affect stunting. Stunting reflects failure to reach linear growth potential in the early years of life and has a highly multifactorial etiology that includes nutritional factors, infectious diseases, and socio-economic factors (reviewed in Prendergast and Humphrey, 2014). Associations between several infectious diseases and stunting have been established, whereby the most profound effect is seen for diarrheal infections (Checkley et al., 2008). In addition to wasting of nutrients, infection-related inflammation could lead to stunting through down-regulation of insulin-like growth factor 1 (IGF-1) expression (Prendergast et al., 2014).