Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • buy SAR-302503 br Materials Methods br Results br Discussion

    2018-10-30


    Materials & Methods
    Results
    Discussion We have used a partial DNA2 protein structure based on the homology between the helicase domain of DNA2 and yeast Upf1–RNA U15 complex and human Upf1–ADP complex (Chakrabarti et al., 2011; Cheng et al., 2007) to identify 3 well defined pockets (Sites 1, 2, and 3), where drug like molecules can preferentially dock. We then used a virtual screen consisting of docking of 260,721 NCI deposited small molecules to these sites to identify DNA2 inhibitors. This screen is similar to a previous virtual screen used to identify inhibitors of ribonucleotide reductase (Chen et al., 2015; Zhou et al., 2013). We characterized one inhibitor, C5, which we demonstrate biochemically inhibits nuclease, DNA dependent ATPase, helicase, and DNA binding activities of DNA2. Through a series of functional analyses, we have pinpointed the specific functions of DNA2 that C5 targets to explain its cellular toxicity. C5 suppresses replication-coupled DSB end resection and restart of either HU- or CPT-stalled DNA replication forks. C5 also inhibits over-resection of nascent DNA in buy SAR-302503 defective in replication fork protection, such as BRCA2. All these data support our conclusion that virtual screening can be efficient, and that C5 is a promising lead compound to develop sensitizers for cancer chemotherapeutics that cause replication stress. It is interesting to note that C5, which our model and data suggest binds to the helicase domain of DNA2, can suppress the nuclease activity. We propose that this occurs because C5 can reduce DNA substrate binding to a site in the helicase domain necessary to activate the nuclease. The dramatic effect of the inhibitor on the nuclease activity, its predicted binding site, and more importantly, the effect of mutations we identified in helicase domain 1A on the nuclease activity and DNA binding reveal that the DNA binding site in helicase domain 1A (counterintuitively) is indeed critical for nuclease activity. This in turn suggests that DNA contacts in the nuclease site are not sufficiently strong to promote nuclease activity; multiple domains of DNA2 have to interact with DNA to elicit nuclease activity. These major new insights into the structure/function mechanism of phylum important class of enzyme, fused helicase/nuclease (including AddAB and RecB), extend recent reports on the X-ray crystal structure of murine DNA2 (80% identity to human DNA2 in the helicase domain)(Zhou et al., 2015). The structure shows DNA threading through a tunnel in the enzyme, first contacting the nuclease. The helicase domain follows and binding occurs as domain 1A and then 2A contact the DNA in the tunnel (Zhou et al., 2015). This explains why both nuclease and helicase utilize threading mechanisms (Bae et al., 2002; Balakrishnan et al., 2010; Kao et al., 2004a). Our work in turn provides direct evidence for requirement for both buy SAR-302503 these domains for nuclease and helicase activity. Taken together with previous biochemical studies (Kao et al., 2004a; Bae et al., 2002; Stewart et al., 2010; Balakrishnan et al., 2010), a “thread, bind, and cleave” model now best explains how DNA2 nuclease works. C5 could either block threading, so that domain 1A does not come into contact with DNA or C5 could block binding to 1A or 2A. While we know about the active sites, the inhibitor will be useful in studying the role of the helicase, which is still conjectural. Co-crystals of DNA2 with C5 should be very informative with respect to the mechanism we propose for C5 function based on the putative binding to Site 1 in our homology structure. The putative common DNA binding site, predicted by our results and shown in the crystal structure, explains how the nuclease and helicase compete for the same substrate, as proposed by Levikova et al. (Levikova et al., 2013) and that the nuclease catalytic site contacts must be disrupted for helicase to be active when duplex DNA is encountered. Therefore, in addition to possible therapeutic uses, the C5 inhibitor and well-designed derivatives will be valuable in future studies of how the helicase and nuclease activities are co-regulated and integrated.